
MODULE 5

Transactions, Concurrency and Recovery,

Recent Topics

Sindhu Jose, CSE Dept, VJCET

SYLLABUS

Sindhu Jose, CSE Dept, VJCET

 Transaction Processing Concepts - overview of concurrency
control, Transaction Model, Significance of concurrency Control &
Recovery, Transaction States, System Log, Desirable Properties of
transactions. Serial schedules, Concurrent and Serializable
Schedules, Conflict equivalence and conflict serializability,
Recoverable and cascade-less schedules, Locking, Two-phase
locking and its variations. Log-based recovery, Deferred database
modification, check-pointing.

 Introduction to NoSQL Databases, Main characteristics of Key-
value DB (examples from: Redis), Document DB (examples from:
MongoDB) ,Main characteristics of Column - Family DB (examples
from: Cassandra) and Graph DB (examples from :ArangoDB)

Transaction Processing Concepts: overview of

concurrency control and recovery

Single-User versus Multiuser Systems

 One criterion for classifying a database system is according to the number

of users who can use the system concurrently.

 A DBMS is single-user if at most one user at a time can use the system,

 Multiuser if many users can use the system and hence access the

database concurrently.

 Single-user DBMSs are mostly restricted to personal computer systems;

most other DBMSs are multiuser.

 Multiple users can access databases and use computer systems

simultaneously.

 Concept of multiprogramming allows the operating system of the

computer to execute multiple programs or processes at the same time.

 A single central processing unit (CPU) can only execute at most

one process at a time.

 A process is resumed at the point where it was suspended

whenever it gets its turn to use the CPU again.

 Hence, concurrent execution of processes is actually interleaved, as

illustrated in Figure(next slide) shows two processes, A and B,

executing concurrently in an interleaved fashion.

 Interleaving keeps the CPU busy when a process requires an input

or output (I/O) operation, such as reading a block from disk.

 Interleaving also prevents a long process from delaying other

processes.

 If the computer system has multiple hardware processors (CPUs),

parallel processing of multiple processes is possible, as illustrated by

processes C and D in Figure .

 Most of the theory concerning concurrency control in databases is

developed in terms of interleaved concurrency

Transactions, Database Items, Read and Write

Operations

 A transaction is an executing program that forms a logical unit of

database processing.

 A transaction includes one or more database access operations → These

can include insertion, deletion, modification, or retrieval operations.

 One way of specifying the transaction boundaries is by specifying explicit

begin transaction end transaction statements in an application program

 A database is basically represented as a collection of named data items.

 The size of a data item is called its granularity. Fine granularity refers

to small Item sizes, where as Coarse granularity refers to large item sizes.

 The basic unit of data transfer from disk to main memory is one

block.

 If the database operations in a transaction do not update the database but

only retrieve data, the transaction is called a read-only transaction

 Otherwise it is known as a read-write transaction.

 The basic database access operations that a transaction can include are as

follows:

 read_item(X) - Reads a database item named X into a program

variable.

• Executing a read_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that disk

block is not already in some main memory buffer).

3. Copy item X from the buffer to the program variable named X.

 write_item(X) -Writes the value of program variable X into the
database item named X.

• Executing a write_item(X) command includes the following steps:
1. Find the address of the disk block that contains item X.
2. Copy that disk block into a buffer in main memory (if that disk
block is not already in some main memory buffer).
3. Copy item X from the program variable named X into its correct
location in the buffer.
4. Store the updated block from the buffer back to disk (either
immediately or at some later point in time).

Serial and Concurrent transaction

 Serial transaction: Transaction one after the other or one at a time
in some order
Concurrent transaction: More then one transactions performing

simultaneously
Eg: Railway reservation

Why Concurrency Control Is Needed

 Several problems can occur when concurrent transactions execute in

an uncontrolled manner.

Types of Problems On Concurrent Transactions

1. The Lost Update Problem (Write -Write Conflict)

2. The inconsistent retrievals problem

3. Dirty read (Temporary Update/Write - Read conflict) problem

4. The Unrepeatable Read Problem (Read -Write Conflict)

The lost update problem (WW Conflict)
 This problem occurs when two transactions that access the same database

items have their operations interleaved in a way that makes the value of some
database items incorrect.

 Suppose that transactions T1 and T2 are submitted at approximately the same
time, and suppose that their operations are interleaved.

 Then the final value of item X is incorrect because T2 reads the value of X
before T1 changes it in the database, and hence the updated value resulting
fromT1 is lost.

Sindhu Jose, CSE Dept, VJCET

• If X = 80 at the start, N = 5 and M = 4 , then the final

result should be X = 79.

• However, in the interleaving of operations shown in

Figure 21.3(a), it is X = 84 because the update in T1that

reduced 5 from X was lost.

The inconsistent retrievals problem
 If one transaction is calculating an aggregate summary function on a number

of database items while other transactions are updating some of these items,

the aggregate function may calculate some values before they are updated

and others after they are updated.

 If the interleaving of operations occurs, the result of T3 will be off by an

amount N because T3 reads the value of X after N is subtracted from it but

reads the value of Y before N is added to it.

Dirty read (Temporary Update/ WR conflict) problem
 This problem occurs when one transaction updates a database item and then

the transaction fails for some reason. Meanwhile, the updated item is accessed

(read) by another transaction before it is changed back to its original value.

Fails

Sindhu Jose, CSE Dept, VJCET

• T1 updates item X and then fails before completion, so the

system must change X back to its original value.

• Before it can do so, however, transaction T2 reads the

temporary value of X, which will not be recorded

permanently in the database because of the failure ofT1.

• The value of item X that is read by T2 is called dirty

data because it has been created by a transaction that has

not completed and committed yet; hence, this problem is

also known as the dirty read problem.

The Unrepeatable Read Problem (RW Conflict)

 Another problem that may occur is called unrepeatable read, where a

transaction T reads the same item twice and the item is changed by

another transaction T’ between the two reads.

 Hence,T receives different values for its two reads of the same item.

 This may occur, for example, if during an airline reservation transaction, a

customer inquiries about seat availability on several flights.

 When the customer decides on a particular flight, the transaction then

reads the number of seats on that flight a second time before completing

the reservation, and it may end up reading a different value for the item.

Transaction States and Additional Operations

 A transaction is an atomic unit of work that should either be completed in

its entirety or not done at all.

 For recovery purposes, the system needs to keep track of when each

transaction starts, terminates, and commits or aborts .

 Therefore, the recovery manager of the DBMS needs to keep track of the

following operations:

1. BEGIN_TRANSACTION →This marks the beginning of transaction

execution.

2. READ or WRITE →These specify read or write operations on the

database items that are executed as part of a transaction.

3. END_TRANSACTION → This specifies that READ and WRITE

transaction operations have ended and marks the end of transaction

execution.

 Temporary. Committed or not, Permanent

3. COMMIT_TRANSACTION → This signals a successful end of the

transaction so that any changes (updates) executed by the transaction

can be safely committed to the database and will not be undone.

4. ROLLBACK (or ABORT)→ This signals that the transaction has ended

unsuccessfully, so that any changes or effects that the transaction may

have applied to the database must be undone.

Why Recovery Is Needed

 Whenever a transaction is submitted to a DBMS for execution, the system

is responsible for making sure that

 Either all the operations in the transaction are completed successfully

and their effect is recorded permanently in the database, or

 That the transaction does not have any effect on the database or any

other transactions.

 In the first case, the transaction is said to be committed, whereas in the

second case, the transaction is aborted.

 If a transaction fails after executing some of its operations but before

executing all of them, the operations already executed must be undone

and have no lasting effect.

Types of failures
1. A computer failure (system crash): A hardware or software error

occurs in the computer system during transaction execution.

 If the hardware crashes, the contents of the computer’s internal memory

may be lost.

2. A transaction or system error: Some operation in the transaction may

cause it to fail, such as integer overflow or division by zero.

 Transaction failure may also occur because of erroneous parameter

values or because of a logical programming error.

 In addition, the user may interrupt the transaction during its execution.

3. Local errors or exception conditions detected by the

transaction: Certain conditions necessitate cancellation of the transaction.

 For example, data for the transaction may not be found.

 A condition, such as insufficient account balance in a banking database,

may cause a transaction, such as a fund withdrawal from that account, to

be canceled

4. Concurrency control enforcement:

 The concurrency control method may decide to abort the transaction, to

be restarted later, because it violates serializability or because several

transactions are in a state of deadlock.

5. Disk failure:

 Some disk blocks may lose their data because of a read or write

malfunction or because of a disk read/write head crash.

 This may happen during a read or a write operation of the transaction.

6. Physical problems and catastrophes:

 This refers to an endless list of problems that includes power or air-

conditioning failure, fire, theft, overwriting disks or tapes by mistake,

and mounting of a wrong tape by the operator.

ACID Properties
 Transactions should possess several properties, often called the ACID

properties

 They should be enforced by the concurrency control and recovery methods

of the DBMS.

 The following are the ACID properties:

1. Atomicity

2. Consistency

3. Isolation

4. Durability

Atomicity: A transaction is an atomic unit of processing; it should either

be performed in its entirety or not performed at all.

 All or Nothing

Consistency preservation: A transaction should be consistency

preserving, meaning that if it is completely executed from beginning to end

without interference from other transactions, it should take the database

from one consistent state to another.

Isolation: A transaction should appear as though it is being executed in

isolation from other transactions, even though many transactions are

executing concurrently.

 That is, the execution of a transaction should not be interfered with by

any other transactions executing concurrently.

Durability or permanency: The changes applied to the database by a

committed transaction must persist in the database.

 These changes must not be lost because of any failure.

 2 accounts A & B. A initially has 1000 Rs, B has 500 Rs

 A → B

Read (A) Read (B)

A = A – 100 B = B + 100

Write (A) → 900 Write (B) → 600

Commit Commit

Finally A=900 and B=600

The System Log (Journal)
 To be able to recover from failures that affect transactions, the system

maintains

 A log to keep track of all transaction operations that affect the values of

database items, and

 Other transaction information that may be needed to permit recovery

from failures.

 The log is a sequential, append-only file that is kept on disk, so it is not

affected by any type of failure except for disk or catastrophic failure.

 Typically, one (or more) main memory buffers hold the last part of the log

file, so that log entries are first added to the main memory buffer.

 In addition, the log file from disk is periodically backed up to archival storage

(tape) to guard against catastrophic failures.

The following are the types of entries — called log records

1. [start_transaction,T] → Indicates that transaction T has started execution.

2. [write_item, T, X, old_value, new_value] → Indicates that transaction T has

changed the value of database item X from old_value to new_value.

3. [read_item,T,X] → Indicates that transaction T has read the value of database

item X.

4. [commit, T] → Indicates that transaction T has completed successfully, and

affirms that its effect can be committed (recorded permanently) to the

database.

5. [abort, T] → Indicates that transaction T has been aborted.

 In these entries, T refers to a unique transaction-id that is generated

automatically by the system for each transaction and that is used to

identify each transaction.

 Because the log contains a record of every WRITE operation that changes

the value of some database item,

 It is possible to undo the effect of these WRITE operations of a

transaction T by tracing backward through the log and resetting all

items changed by aWRITE operation ofT to their old_values.

 Redo of an operation may also be necessary if a transaction has its updates

recorded in the log but a failure occurs before the system can be sure that

all these new_value shave been written to the actual database on disk from

the main memory buffers.

Commit Point of a Transaction

 A transaction T reaches its commit point when

 All its operations that access the database have been executed successfully

and

 The effect of all the transaction operations on the database have been

recorded in the log.

 Beyond the commit point:

 Its effect must be permanently recorded in the database.

 The transaction then writes a commit record [commit, T] into the log.

 If a system failure occurs, we can search back in the log for all transactions T

that have written a [start_transaction, T] record into the log but have not

written their [commit, T] record yet

 These transactions may have to be rolled back to undo their effect on the

database during the recovery process.

 It is common to keep one or more blocks of the log file in main memory
buffers, called the log buffer, until they are filled with log entries and then
to write them back to disk only once, rather than writing to disk every
time a log entry is added.

 This saves the overhead of multiple disk writes of the same log file buffer.

 At the time of a system crash, only the log entries that have been written
back to disk are considered in the recovery process because the contents
of main memory may be lost.

 Hence, before a transaction reaches its commit point, any portion of the
log that has not been written to the disk yet must now be written to the
disk.

 This process is called force-writing the log buffer before committing
a transaction.

Schedules (Histories) of Transactions

 A schedule (or history) S of n transactions T1,T2, ...,Tn is an
ordering of the operations of the transactions.

 Operations from different transactions can be interleaved in the
schedule S.

 However, for each transaction Ti that participates in the schedule S,
the operations of Ti in S must appear in the same order in which they
occur in Ti.

 The order of operations in S is considered to be a total ordering,
meaning that for any two operations in the schedule, one must occur
before the other.

 A shorthand notation for describing a schedule uses the symbols:

 b, r, w, e, c, and a : -The operations begin_transaction,

read_item, write_item, end_transaction, commit, and abort,

respectively,

 and appends as a subscript the transaction id (transaction number)

to each operation in the schedule.

 In this notation, the database item X that is read or written follows

the r and w operations in parentheses.

 Two operations in a schedule are said to conflict if they satisfy all

three of the following conditions:

1. They belong to different transactions;

2. They access the same item X; and

3. At least one of the operations is a write_item(X).

Example

32

Contd...

 Two operations in a schedule are said to conflict if they

satisfy all three of the following conditions:

(1) they belong to different transactions;

(2) they access the same item X; and

(3) at least one of the operations is a write_item(X).

33

 For example, in schedule Sa, the operations r1(X) and

w2(X) conflict, as do the operations r2(X) and

w1(X), and the operations w1(X) and w2(X).

 The operations r1(X) and r2(X) do not conflict, since they

are both read operations; the operations w2(X) and w1(Y)

do not conflict because they operate on distinct data items

X and Y; and the operations r1(X) and w1(X) do not

conflict because they belong to the same transaction.

34

read-write conflict
 Two operations are conflicting if changing their order can result in

a different outcome.

 For example, if we change the order of the two operations
r1(X);w2(X) to w2(X); r1(X), then the value of X that is read by
transaction T1 changes, because in the second order the value of X
is changed by w2(X) before it is read by r1(X), whereas in the first
order the value is read before it is changed. This is called a
read-write conflict.

write-write conflict
 In write-write conflict we change the order of two operations

such as w1(X); w2(X) to w2(X); w1(X).

 For a write-write conflict, the last value of X will differ because in
one case it is written byT2 and in the other case byT1.

35

Complete schedule
 A schedule S of n transactions T1, T2, ..., Tn is said to be a

complete schedule if the following conditions hold:

36

Committed projection
 Committed projection C(S) of a schedule S, which includes

only the operations in S that belong to committed transactions—

that is, transactionsTi whose commit operation ci is in S.

37

Characterizing Schedules Based on Recoverability
 For some schedules it is easy to recover from transaction and system

failures, whereas for other schedules the recovery process can be quite
involved.

 In some cases, it is even not possible to recover correctly after a failure.

 Hence, it is important to characterize the types of schedules for which
recovery is possible, as well as those for which recovery is relatively
simple.

 The definition of recoverable schedule is as follows:

 A schedule S is recoverable if no transaction T in S commits until all
transactions T’ that have written some item X that T reads have
committed.

 A transaction T reads from transaction T’ in a schedule S if some item X
is first written by T’ and later read by T.

 In addition, T’ should not have been aborted before T reads item X, and
there should be no transactions that write X after T’ writes it and before
T reads it.

Consider a schedule Sa’

Sa ’ = r1(X);r2(X);w1(X);r1(Y);w2(X);c2; w1(Y);c1;

 Sa ’ is recoverable, even though it suffers from the lost update problem.

 Consider the two (partial) schedules Sc and Sd.

Sc: r1(X);w1(X);r2(X);r1(Y);w2(X);c2;a1;

Sd: r1(X);w1(X);r2(X);r1(Y);w2(X);w1(Y);c1;c2;

Se: r1(X);w1(X);r2(X);r1(Y);w2(X);w1(Y);a1;a2;

 Sc is not recoverable because T2 reads item X from T1 ,but T2 commits
before T1 commits.

 The problem occurs if T1 aborts after the c2 operation in Sc , then the
value of X that T2 read is no longer valid and T2 must be aborted after it is
committed, leading to a schedule that is not recoverable.

 For the schedule to be recoverable, the c2 operation in Sc must be

postponed until afterT1 commits, as shown in Sd .

 If T1 aborts instead of committing, then T2 should also abort as shown

in Se, because the value of X it read is no longer valid.

 In Se , aborting T2 is acceptable since it has not committed yet, which is

not the case for the non-recoverable schedule Sc.

Sindhu Jose, CSE Dept, VJCET

Cascading Rollback

Cascading rollback(or cascading abort): A phenomenon

occurring in some recoverable schedules, where an

uncommitted transaction has to be rolled back because it read

an item from a transaction that failed.

 Example:

 Se: r1(X); w1(X);r2(X); r1(Y); w2(X); w1(Y); a1; a2;

 In schedule Se, where transaction T2 has to be rolled back

because it read item X from T1, and T1 then aborted.

Cascadeless

 A schedule is said to be cascade-less, or to avoid cascading

rollback, if every transaction in the schedule reads only items that were

written by committed transactions.

 In this case, all items read will not be discarded, so no cascading rollback

will occur.

 There is a third, more restrictive type of schedule, called a strict

schedule

 A Strict Schedule, is in which transactions can neither read nor write

an item X until the last transaction that wrote X has committed (or

aborted).

 All strict schedules are cascadeless, and all cascadeless schedules

are recoverable.

Serial, Non-serial, and Conflict-Serializable

Schedules

1. Serial Schedule

The serial schedule is a type of schedule where one transaction is

executed completely before starting another transaction. In the

serial schedule, when the first transaction completes its cycle, then

the next transaction is executed.

 For example: Suppose there are two transactions T1

and T2 which have some operations. If it has no

interleaving of operations, then there are the following

two possible outcomes:

 Execute all the operations of T1 which was followed by

all the operations of T2.

 Execute all the operations of T2 which was followed by

all the operations of T1.

These two schedules are called serial schedules.

Non-serial Schedule

If interleaving of operations is allowed, then there will

be non-serial schedule.

It contains many possible orders in which the system

can execute the individual operations of the

transactions.

Serializable schedule

 The serializability of schedules is used to find non-

serial schedules that allow the transaction to

execute concurrently without interfering with one

another.

 It identifies which schedules are correct when

executions of the transaction have interleaving of

their operations.

 A non-serial schedule will be serializable if its

result is equal to the result of its transactions

executed serially.

Characterizing Schedules Based on Serializability

 Suppose that two users—for example, two airline reservations

agents—submit to the DBMS, transactions T1 and T2 at

approximately the same time.

Sindhu Jose, CSE Dept, VJCET

 If no interleaving of operations is permitted, there are

only two possible outcomes:

1. Execute all the operations of transaction T1 (in

sequence) followed by all the operations of transaction

T2 (in sequence).

2. Execute all the operations of transaction T2 (in

sequence) followed by all the operations of transaction

T1 (in sequence).

 These two schedules are called serial schedules.

49 Sindhu Jose, CSE Dept, VJCET

Contd...

 If interleaving of operations is allowed, there will be many

possible orders in which the system can execute the

individual operations of the transactions.

50 Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

Serial, Non-serial, and Conflict-Serializable
Schedules

 Formally, a schedule S is serial if, for every transaction T
participating in the schedule, all the operations of T are
executed consecutively in the schedule; otherwise, the
schedule is called non-serial.

 Therefore, in a serial schedule, only one transaction at a
time is active—the commit (or abort) of the active
transaction initiates execution of the next transaction.

 No interleaving occurs in a serial schedule.

 The problem with serial schedules is that they limit concurrency by

prohibiting interleaving of operations.

 In a serial schedule, if a transaction waits for an I/O operation to

complete, we cannot switch the CPU processor to another transaction,

thus wasting valuable CPU processing time.

 Additionally, if some transaction T is quite long, the other transactions

must wait forT to complete all its operations before starting.

 Hence, serial schedules are considered unacceptable in practice.

 To illustrate our discussion, consider the schedules in Figure 21.5, and

assume that the initial values of database items are

 X= 90 andY= 90 and that N= 3 and M= 2.

 After executing transactions T1 and T2 , we would expect the database

values to be

 X= 89 andY= 93, according to the meaning of the transactions.

Sindhu Jose, CSE Dept, VJCET

 Assume that the initial values of database items are X =
90 and Y = 90 and that N = 3 and M = 2.

 Finally , X=89, Y=93 for both A and B

Example

 Executing either of the serial schedules A or B gives the correct

results(same results).

 Now consider the non-serial schedules C and D.

 Schedule C gives the

 X= 92 andY= 93,

 in which the X value is erroneous, whereas schedule D gives

the correct results(ie X=89 and Y= 93, same as that of Serial

schedules A and B).

 Schedule C gives an erroneous result because of the lost update

problem.

Example

Sindhu Jose, CSE Dept, VJCET

 Assume that the initial values of database items are X = 90
and Y = 90 and that N = 3 and M = 2.

 Schedule C:X=92, Y=93, Schedule D: X=89, Y=93 which is
Correct

Serializable schedule

 Definition: A schedule S of n transactions is serializable if it is equivalent

to some serial schedule of the same n transactions.

 There are several ways to define schedule equivalence.

 The simplest but least satisfactory definition involves comparing the

effects of the schedules on the database.

 Two schedules are called result equivalent if they produce the same

final state of the database.

 However, two different schedules may accidentally produce the same final

state.

 For example, in Figure 21.6, schedules S1 and S2 will produce the same

final database state if they execute on a database with an initial value of X=

100; however, for other initial values of X, the schedules are not result

equivalent.

 Additionally, these schedules execute different transactions, so they

definitely should not be considered equivalent.

 Hence, result equivalence alone cannot be used to define equivalence of

schedules.

 For two schedules to be equivalent, the operations applied to each data

item affected by the schedules should be applied to that item in both

schedules in the same order.

 Two definitions of equivalence of schedules are generally used: Conflict

equivalence and View equivalence.

 The definition of conflict equivalence of schedules is as follows:

 Two schedules are said to be conflict equivalent if the order of any

two conflicting operations is the same in both schedules.

 Two operations in a schedule are said to conflict if they belong to

different transactions, access the same database item, and either

both are write_item operations or one is a write_item and the

other a read_item.

 A schedule S to be conflict serializable if it is (conflict)

equivalent to some serial schedule S.

Sindhu Jose, CSE Dept, VJCET

 Schedule D is conflict equivalent to the serial schedule A.

 In both schedules, the read_item(X) of T2 reads the value of X written

by T1, while the other read_item operations read the database values

from the initial database state.

 Because A is a serial schedule and schedule D is equivalent to A, D is a

conflict serializable schedule.

Testing for Conflict Serializability of a Schedule
 There is a simple algorithm for determining whether a particular schedule

is conflict serializable or not.

 The algorithm looks at only the read_item and write_item

operations in a schedule to construct a precedence graph(or

serialization graph),

 which is a directed graph G= (N,E) that consists of

 A set of nodes N= {T1,T2, ...,Tn} and

 A set of directed edges E= {e1,e2, ..., em }.

 The precedence graph is constructed as described in Algorithm.

 If there is a cycle in the precedence graph, schedule S is not

(conflict) serializable; if there is no cycle, S is serializable.

Concurrency control Methods

 A lock is a variable associated with a data item that describes the status of

the item with respect to possible operations that can be applied to it.

 Generally, there is one lock for each data item in the database.

 Locks are used as a means of synchronizing the access by concurrent

transactions to the database items.

Types of Locks

 Several types of locks are used in concurrency control.

 To introduce locking concepts gradually, first we discuss

➢ binary locks, which are simple, but are also too restrictive for database

concurrency control purposes, and so are not used in practice.

➢ Shared/exclusive locks also known as read/write locks which

provide more general locking capabilities and are used in practical

database locking schemes.

➢ Two-phase locking : Has a ‘growing’ and a ‘shrinking’ phase

Binary Locks

 A binary lock can have two states or values: locked and unlocked

(or 1 and 0, for simplicity).

 A distinct lock is associated with each database item X.

 If the value of the lock on X is 1, item X cannot be accessed by a

database operation that requests the item.

 If the value of the lock on X is 0, the item can be accessed when

requested, and the lock value is changed to 1

 We refer to the current value (or state) of the lock associated with item

X as lock(X).

 Two operations, lock_item and unlock_item, are used with binary

locking.

 A transaction requests access to an item X by first issuing a

lock_item(X) operation.

 If LOCK(X) = 1, the transaction is forced to wait.

 If LOCK(X) = 0, it is set to 1 (the transaction locks the item) and the

transaction is allowed to access item X.

 When the transaction is through using the item, it issues an

unlock_item(X) operation, which sets LOCK(X) back to 0 (unlocks the

item) so that X may be accessed by other transactions.

 Hence, a binary lock enforces mutual exclusion on the data item.

❑A description of the lock_item(X) and unlock_item(X) operations is shown below:

 It is quite simple to implement a binary lock; all that is needed is a

binary-valued variable, LOCK, associated with each data item X in the

database.

 In its simplest form, each lock also includes a queue for transactions

that are waiting to access the item.

 The system needs to maintain only these records for the items that are

currently locked in a lock table, which could be organized as a hash

file on the item name.

 Items not in the lock table are considered to be unlocked.

 The DBMS has a lock manager subsystem to keep track of and

control access to locks.

Shared/Exclusive (or Read/Write) Locks:

 The binary locking scheme is too restrictive for database items

because at most, one transaction can hold a lock on a given item.

 We should allow several transactions to access the same item X if

they all access X for reading purposes only(ie not conflicting).

 However, if a transaction is to write an item X, it must have

exclusive access to X.

 For this purpose, a different type of lock called a multiple-

mode lock is used.

Sindhu Jose, CSE Dept, VJCET

 In this scheme called shared/exclusive or read/write

locks

 There are three locking operations: → read_lock(X),

write_lock(X), and unlock(X).

 A lock associated with an item X, LOCK(X), now has three

possible states → read-locked, write-locked, or

unlocked.

 A read-locked item is also called share-locked because other

transactions are allowed to read the item, whereas a write-

locked item is called exclusive-locked because a single

transaction exclusively holds the lock on the item.

 When we use the shared/exclusive locking scheme, the system must enforce

the following rules:

1. A transaction T must issue the operation read_lock(X) or write_lock(X)

before any read_item(X) operation is performed in T.

2. A transaction T must issue the operation write_lock(X) before any

write_item(X) operation is performed in T.

3. A transaction T must issue the operation unlock(X) after all read_item(X)

and write_item(X) operations are completed in T.

4. A transaction T will not issue a read_lock(X) operation if it already holds a

read (shared) lock or a write (exclusive) lock on item X. This rule may be

relaxed.

5. A transaction T will not issue a write_lock(X) operation if it already holds a

read (shared) lock or write (exclusive) lock on item X. This rule may be

relaxed.

6. A transaction T will not issue an unlock(X) operation unless it already holds

a read (shared) lock or a write (exclusive) lock on item X.

Sindhu Jose, CSE Dept, VJCET

 Conversion of Locks. Sometimes it is desirable to relax conditions 4

and 5 in the preceding list in order to allow lock conversion

 That is, a transaction that already holds a lock on item X is allowed

under certain conditions to convert the lock from one locked state to

another.

 For example, it is possible for a transaction T to issue a read_lock(X) and

then later to upgrade the lock by issuing a write_lock(X) operation.

 If T is the only transaction holding a read lock on X at the time it issues the

write_lock(X) operation, the lock can be upgraded

 Otherwise, the transaction must wait.

 It is also possible for a transaction T to issue a write_lock(X) and then

later to downgrade the lock by issuing a read_lock(X) operation.

Two-phase locking
 A transaction is said to follow the two-phase locking protocol if

all locking operations (read_lock, write_lock) precede the first

unlock operation in the transaction.

 Such a transaction can be divided into two phases:

 An expanding or growing (first) phase, during which new

locks on items can be acquired but none can be released.

 A shrinking (second) phase, during which existing locks can be

released but no new locks can be acquired.

Guaranteeing Serializability by Two-Phase

Locking

 If lock conversion is allowed,

 Then upgrading of locks (from read-locked to write-locked) must be

done during the expanding phase, and

 Downgrading of locks (from write-locked to read-locked) must be

done in the shrinking phase.

 Hence, a read_lock(X) operation that downgrades an already held write

lock on X can appear only in the shrinking phase.

Contd…
 Transactions T1 and T2 do not follow the two-phase locking

protocol because the write_lock(X) operation follows the

unlock(Y) operation in T1, and similarly the write_lock(Y)

operation follows the unlock(X) operation inT2.

78

Contd….

 If we enforce two-phase locking, the transactions can be

rewritten asT1’ andT2’.

79

Contd…

 Two-phase locking limits the amount of concurrency that can

occur in a schedule because a transaction T may not be able to

release an item X after it is through using it if T must lock an

additional itemY later;

 Hence, X must remain locked by T until all items that the

transaction needs to read or write have been locked; only

then can X be released byT.

 Meanwhile, another transaction seeking to access X may be

forced to wait, even thoughT is done with X;

 Although the two-phase locking protocol guarantees

serializability, it does not permit all possible serializable

schedules.

80

Basic, Conservative, Strict, and Rigorous

Two-Phase Locking

 There are a number of variations of two-phase locking (2PL).

The technique just described is known as basic 2PL.

 A variation known as conservative 2PL (or static 2PL)

requires a transaction to lock all the items it accesses before the

transaction begins execution, by predeclaring its read-set and

write-set.

 The read-set of a transaction is the set of all items that the

transaction reads, and the write-set is the set of all items that it

writes.

 If any of the predeclared items needed cannot be locked, the

transaction does not lock any item; instead, it waits until all the

items are available for locking.
81

Contd...

 Conservative 2PL is a deadlock-free protocol.

 However, it is difficult to use in practice because of the need

to predeclare the read-set and writeset, which is not possible

in many situations.

82

Strict 2PL

 Strict 2PL guarantees strict schedules.

 In this variation, a transaction T does not release any of its

exclusive (write) locks until after it commits or aborts.

 Hence, no other transaction can read or write an item that

is written by T unless T has committed, leading to a strict

schedule for recoverability.

 Strict 2PL is not deadlock-free.

83

Rigorous 2PL

 A more restrictive variation of strict 2PL is rigorous

2PL, which also guarantees strict schedules.

 In this variation, a transaction T does not release any of its

locks (exclusive or shared) until after it commits or

aborts, and so it is easier to implement than strict 2PL.

84

Contd...
 Difference between conservative and rigorous 2PL.

 Conservative 2PL must lock all its items before it starts, so
once the transaction starts it is in its shrinking phase;

 Rigorous 2PL does not unlock any of its items until after it
terminates (by committing or aborting), so the transaction is
in its expanding phase until it ends.

85

Pitfalls of lock-based protocols

Sindhu Jose, CSE Dept, VJCET

 The potential for deadlock exists in most locking

protocols.

 Starvation is also possible if concurrency control

manager is badly designed.

Use of locks in strict two-phase locking
1. When an operation accesses a data item within a transaction:

a) If the data item is not already locked, it is locked and the operation

proceeds.

b) If the data item has a conflicting lock set by another transaction, the

transaction must wait until it is unlocked.

c) If the data item has a non-conflicting lock set by another transaction,

the lock is shared and the operation proceeds.

d) If the object has already been locked in the same transaction, the lock

will be promoted/converted if necessary and the operation proceeds

2. When a transaction is committed or aborted, the server unlocks all data

item it locked for the transaction

Log based recovery
Using the Log to Redo and UndoTransactions

 The recovery scheme uses two recovery procedures. Both these procedures

make use of the log to find the set of data items updated by each transaction Ti,

and their respective old and new values.

redo(Ti)

 Sets the value of all data items updated by transactionTi to the new values.

 The order in which updates are carried out by redo is important; when

recovering from a system crash, if updates to a particular data item are

applied in an order different from the order in which they were applied

originally, the final state of that data item will have a wrong value.

 Most recovery algorithms do not perform redo of each transaction

separately; instead they perform a single scan of the log, during which redo

actions are performed for each log record as it is encountered.

 This approach ensures the order of updates is preserved, and is more

efficient since the log needs to be read only once overall, instead of once per

transaction.

undo(Ti)

 Restores the value of all data items updated by transaction Ti to the old

values. In the recovery scheme :

 The undo operation not only restores the data items to their old value,

but also writes log records to record the updates performed as part of

the undo process.

 As with the redo procedure, the order in which undo operations are

performed is important

 When the undo operation for transaction Ti completes, it writes a log

record, indicating that the undo has completed.

Database modification

Sindhu Jose, CSE Dept, VJCET

The database can be modified using two approaches :

1) Deferred database modification – All logs are written

on to the stable storage and the database is updated when a

transaction commits.

2) Immediate database modification – Each log follows

an actual database modification. That is, the database is

modified immediately after every operation.

Deferred database modification

 The deferred update techniques do not physically update the

database on disk until after a transaction reaches its commit

point; then the updates are recorded in the database.

 Before reaching commit, all transaction updates are recorded

in the local transaction workspace or in the main memory

buffers that the DBMS maintains (the DBMS main memory

cache).

 Before commit, the updates are recorded persistently in the log,

and then after commit, the updates are written to the database on

disk.

Contd...

 If a transaction fails before reaching its commit point, it will

not have changed the database in any way, so UNDO is not

needed.

 It may be necessary to REDO the effect of the operations of

a committed transaction from the log, because their effect

may not yet have been recorded in the database on disk.

 Hence, deferred update is also known as the NO-

UNDO/REDO algorithm.

92

Check-pointing

 When a system crash occurs, must consult the log to determine
those transactions that need to be redone and those that need to be
undone.

 In principle, need to search the entire log to determine this
information.

 Keeping and maintaining logs in real time and in real environment
may fill out all the memory space available in the system. As time
passes, the log file may grow too big to be handled at all.

 Checkpoint is a mechanism where all the previous logs are removed
from the system and stored permanently in a storage disk.

 Checkpoint declares a point before which the DBMS was in
consistent state, and all the transactions were committed.(like a
bookmark)

Sindhu Jose, CSE Dept, VJCET

Sindhu Jose, CSE Dept, VJCET

 The recovery system reads the logs backwards from the end to the

last checkpoint.

 It maintains two lists, an undo-list and a redo-list.

 If the recovery system sees a log with <Tn, Start> and <Tn,

Commit> or just <Tn, Commit>, it puts the transaction in the

redo-list.

 If the recovery system sees a log with <Tn, Start> but no commit

or abort log found, it puts the transaction in undo-list.

 All the transactions in the undo-list are then undone and their logs

are removed. All the transactions in the redo-list and their previous

logs are removed and then redone before saving their logs.

Sindhu Jose, CSE Dept, VJCET

 For example: In the log file, transaction t2 and t3 will have

<tn, Start> and <tn, Commit>. The t1 transaction will have

only <tn, commit> in the log file. That's why the transaction is

committed after the checkpoint is crossed. Hence it puts t1, t2

and t3 transaction into redo list.

 The transaction is put into undo state if the recovery system sees

a log with <tn, Start> but no commit or abort log found. In the

undo-list, all the transactions are undone, and their logs are

removed.

 For example:Transaction t4 will have <tn, Start>. So t4 will

be put into undo list since this transaction is not yet complete

and failed.

